
Page 14 FoxRockX July 2008

* Display the orders for the first one.

loNode = loNodes.item(0)
loOrders = loNode.selectNodes(‘order‘)
lcOrders = ‘‘
for each loOrder in loOrders
 lcOrders = lcOrders + ;
 iif(empty(lcOrders), ‘‘, chr(13)) + ;
 loOrder.getAttribute(‘orderid‘)
next loOrder
messagebox(loNode.getAttribute(‘company‘) + ;
 ‘ has the following orders:‘ + ;
 chr(13) + chr(13) + lcOrders)

As with generating XML, you can create a
wrapper class for parsing specific XML. For ex-
ample, I’ve created a class called SFRSS that parses
RSS-formatted XML. The SFXML class I discussed
earlier can parse attribute-based XML without you
having to know XPath syntax; see SFXMLParse.
PRG for an example.

Summary
In this article, I discussed what XML is and pre-
sented various methods of generating and parsing
XML. In the next issue, I’ll discuss why XML is use-
ful and show some practical examples of how I’ve
used XML in various applications.

Author Profile
Doug Hennig is a partner with Stonefield Systems Group Inc.
and Stonefield Software Inc. He is the author of the award-win-
ning Stonefield Database Toolkit (SDT); the award-winning
Stonefield Query; the MemberData Editor, Anchor Editor, and
CursorAdapter and DataEnvironment builders that come with
Microsoft Visual FoxPro; and the My namespace and updated
Upsizing Wizard in Sedna. Doug is co-author of the “What’s
New in Visual FoxPro” series (the latest being “What’s New
in Nine”) and “The Hacker’s Guide to Visual FoxPro 7.0.”
He was the technical editor of “The Hacker’s Guide to Visual
FoxPro 6.0” and “The Fundamentals.” All of these books are
from Hentzenwerke Publishing (http://www.hentzenwerke.
com). Doug wrote over 100 articles in 10 years for FoxTalk
and has written numerous articles in FoxPro Advisor and Ad-
visor Guide. He has spoken at every Microsoft FoxPro De-
velopers Conference (DevCon) since 1997 and at user groups
and developer conferences all over the world. He is one of the
administrators for the VFPX VFP community extensions Web
site (http://www.codeplex.com/VFPX). He has been a Micro-
soft Most Valuable Professional (MVP) since 1996. Doug was
awarded the 2006 FoxPro Community Lifetime Achievement
Award (http://fox.wikis.com/wc.dll?Wiki~FoxProCommunity
LifetimeAchievementAward~VFP). Web: www.stonefield.com
and www.stonefieldquery.com, Email: dhennig@stonefield.
com, Blog: http://doughennig.blogspot.com

Although we‘ve had techniques that let us ignore
work area numbers and letters for many versions,
some developers still write code that addresses
work areas directly. This month, I‘ll look at how to
write code without worrying about work area let-
ters or numbers, and how to depend as little as pos-
sible on the currently selected work area. The result
is better code that‘s easier to write and maintain.

In dBase II, you could open two tables simul-
taneously. Each occupied one work area. By the
time I entered the Xbase world with FoxBase+,
there were 10 work areas; most of the time, that
was enough, but now and then, I found it limiting.
FoxPro had 25 work areas in the standard version
and 225 with the extended version; I‘m not sure I
ever found myself short of work areas, even in the
standard version. When VFP shipped with 32,767
work areas per data session, I knew I‘d never worry
about available work areas again.

When there were only two work areas or even
10, keeping track of what table was open in which
work area was no problem. But as soon as there
were more work areas than I could keep track of

in my head, I started making sure I didn‘t need to
know where a given table was open.

The tools for letting us ignore work areas have
gotten better and better over the years. There are
three related issues. The first is to open a table with-
out having to figure out what work area to use. The
second is addressing an open table without know-
ing what work area it‘s in. The third is writing code
without having to worry about what work area is
current. Combining the three means you‘ll never
worry about stepping on an open table or acting on
the wrong table again.

Use aliases, not work area
numbers or letters
Every time you open a table in VFP, the open table
occupies a work area. As noted above, in VFP (all
versions from 3 to 9), each data session offers 32,767
work areas. Work areas are numbered from 1 to
32,767 (there‘s also a hidden work area 0, used for
system tables, but that‘s a story for another article).
The first 10 work areas can also be referenced by
the letters A through J.

Working with Work Areas
Tamar E. Granor

July 2008 FoxRockX Page 15

* Version 3
USE YourTable IN 0

Similarly, if you specify IN SELECT(1), VFP
opens the table in the highest available work area,
like this:

* Version 4
USE YourTable IN SELECT(1)

The difference between the one-line versions 3
and 4 and the two-line sequences of versions 1 and
2 is that after the one-liners, you haven‘t changed
work areas. You‘re still in the same work area
you were in before opening the table. Often, that
doesn‘t matter, especially if you‘re opening a series
of tables. Consider these two blocks of code:

* Version 1
SELECT 1
USE Customers
SELECT 2
USE Orders
SELECT 3
USE OrderDetails

SELECT 1
* Do something with customer records

* Version 2
USE Customers IN 0
USE Orders IN 0
USE OrderDetails IN 0

SELECT Customers
* Do something with customer records

Not only is version 2 shorter and easier to read,
but it expresses intent more clearly than version 1.

Use IN rather than SELECT
With the techniques above, you never have to think
about work area numbers again, nor keep a chart to
show you which table is open in which work area
(I used to do that to ensure I didn‘t make mistakes).
That‘s a major win, but you can do better.

Many of VFP‘s commands and functions
operate in the current work area. If you forget to
SELECT the right work area, or you do so but then
something changes the work area before your code
runs, you can get nasty, unexpected results. For-
tunately, many of those commands now accept an
IN clause to indicate which work area to operate
on. Similarly, most of the functions accept a param-
eter to indicate the work area.

When you use the IN clause or pass the pa-
rameter, you ensure that the command or function
operates where you want it to; no event, ON KEY
LABEL or user action (such as clicking on a grid)
can switch work areas on you. In addition, you
don’t need to save the current work area and switch
to the desired work area, then restore the old work
area after doing whatever you need.

When you USE a table, by default, it opens in
the current work area. If there‘s already a table open
in that work area, the open table is closed. Once a
table is open in a given work area, you can refer to
the work area by the alias of the open table. This is
always a better approach than using the work area
letter or number, since it lets your code express in-
tent rather than structure. For example, if you know
that the Customers table is open in work area 3, you
can move to that work area with any of the follow-
ing lines of code:

* Version 1
SELECT 3

or:

* Version 2
SELECT C

or:

* Version 3
SELECT Customers

The first two versions tell you very little; to
understand them, you have to know what table is
open in work area 3/C. The third version, though,
tells you that you‘re moving to the work area for
the Customer table (in fact, there‘s rarely a reason
to select a particular work area anymore; I‘ll talk
about that later in this article).

Open tables without thinking
about work areas
While using the alias rather than the work area
number in your code is handy, it wouldn‘t be all
that powerful if you still had to remember which
work areas are available every time you wanted
to open a table. Fortunately, you can avoid that, as
well.

VFP (and FoxPro before it) offers two ways to
find an available work area. SELECT 0 moves to the
lowest available work area, while the function call
SELECT(1) returns the number of the highest avail-
able work area. You can be sure you‘re opening a
table in an unused work area by issuing either of
the following sequences:

* Version 1
SELECT 0
USE YourTable

or:

* Version 2
SELECT SELECT(1)
USE YourTable

In fact, you can consolidate either of those into
one line of code, with one difference in behavior.
The USE command, like many of VFP‘s Xbase com-
mands, accepts the IN clause to specify the work
area. When you specify IN 0, VFP opens the table
in the lowest available work area:

Page 16 FoxRockX July 2008

Consider this code:
* Version 1
nOldSelect = SELECT()
SELECT Orders

CALCULATE SUM(Freight) TO nTotalFreight

SELECT (nOldSelect)

Four lines of code to do a simple calculation
(full disclosure: I don’t think I’ve ever used the
CALCULATE command in an application; it’s just
convenient for this demonstration. One good place
to use it though is instead of the COUNT, SUM and
AVERAGE commands, as those don’t support the
IN clause). You can do it in one line, if you use the
IN clause.
* Version 2
CALCULATE SUM(Freight) TO nTotalFreight ;
 IN Orders

Similarly, look at the difference when searching
for a particular record with the SEEK() function:
* Version 1
nOldSelect = SELECT()
SELECT Orders

cOldOrder = ORDER()
SET ORDER TO OrderDate

IF SEEK({^ 1998-04-24})
 * Process records for this date
ENDIF

SET ORDER TO (cOldOrder)
SELECT (nOldSelect)

Using the optional alias and order parameters
of the function, we can eliminate six lines of code
and decrease the risk of error:
* Version 2
IF SEEK({^ 1998-04-24}, “Orders“, OrderDate“)
 * Process records for this date
ENDIF

Behind the scenes, of course, VFP does change
work areas, but it handles all the details of making
the change and restoring the original set-up. Keep
this in mind, though, as you write code; commands
that use IN and functions that pass the optional
alias parameter must assume that they‘re executing
in the specified work area.

The special case of REPLACE
While using the IN clause is convenient for most
Xbase commands, for REPLACE, it‘s virtually
required. First, REPLACE is destructive; chang-
ing data in the wrong area can have serious con-
sequences. Second, REPLACE has a behavior that
surprises many VFP developers; if you‘re at EOF in
the current work area, nothing gets replaced.

When looking at other people‘s code, I often
see lines like this:
* Don‘t write code like this
REPLACE Orders.Freight WITH m.nFreightTotal

If the current work area is Orders, that line
behaves as you‘d expect, substituting the value of
nFreightTotal into the Freight field of the current
work area. In this situation, the alias Orders is sim-
ply unnecessary.

What happens if the current work area is some-
thing other than Orders? That depends on what‘s
open in the current work area. If there‘s no table
open in the current area, the user is prompted to
open a table; if he cancels that dialog, error 52, „No
table is open in the current work area“ fires. If the
user picks a table to open, and that table has any
records, the replacement succeeds. If the user picks
a table to open, and the table is empty, the replace
fails. Clearly, none of these results is desirable,
since we certainly don‘t want the user prompted to
open a table.

If there is a table open in the current work
area, the results depend on the position of the
record pointer. If it‘s pointing to a valid record, the
replacement succeeds. If the record pointer is at the
end-of-file marker, the replacement silently fails
to take place. It‘s easy to see that, even though the
REPLACE command shown above might succeed,
it‘s pretty risky as written.

Why does VFP behave this way? Because
REPLACE, like most other Xbase commands, is
scoped to the current work area. If you don‘t spec-
ify otherwise, REPLACE is understood as being
REPLACE NEXT 1 in the current work area. For
comparison, consider the DELETE command,
which also has a default scope of NEXT 1. You‘d
never issue DELETE with one work area selected,
and expect it to delete a record in another work
area, without including the IN clause. And, if the
current work area is at EOF, you wouldn‘t expect
DELETE to delete any records.

What makes REPLACE so confusing is its abil-
ity to replace fields in multiple tables at one time.
For example, this is a valid (if dangerous) com-
mand:
REPLACE Person.cLast WITH m.cLast, ;
 Person.cFirst WITH m.cFirst, ;
 Address.cStreetAddr WITH m.cStreetAddrz ;
 Address.cCity WITH m.cCity, ;
 Address.cState WITH m.cState, ;
 Person.cEmail WITH m.cEmail

This command affects the current record in
both Person and Address. But what if one of those
tables is at EOF? VFP‘s rules determine that it‘s the
current work area that matters most. If you‘re at
EOF there, the REPLACE doesn‘t take place at all;

July 2008 FoxRockX Page 17

otherwise, it makes the attempt. However, if any
of the other tables are at EOF, nothing happens in
that table.

These risks mean that REPLACE should never
be used to change records in more than one table
at once and that it should always include the IN
clause. Consider this variation of the command at
the beginning of this section:

* Always use IN with REPLACE
REPLACE Freight WITH m.nFreightTotal IN Orders

There‘s no ambiguity here. The Freight field in
the Orders table will be updated as long as Orders
is not at EOF. No errors, no dialogs appearing to
the user (unless Orders is not open, in which case
this is a developer error), no failure based on the
state of any other table.

For the more complex replace above, two com-
mands would be better:

REPLACE cLast WITH m.cLast, ;
 cFirst WITH m.cFirst, ;
 cEmail WITH m.cEmail ;
 IN Person
REPLACE cStreetAddr WITH m.cStreetAddr, ;
 cCity WITH m.cCity, ;
 cState WITH m.cState ;
 IN Address

Where you can use IN
Not every Xbase command supports the IN clause.
However, the ones that do include the ones you‘re
most likely to use in applications. IN is supported
for APPEND, BLANK, CALCULATE, DELETE,
DISPLAY/LIST STRUCTURE, FLUSH, GO, PACK,
RECALL, REPLACE, SEEK, SET FILTER, SET OR-
DER, SET RELATION, SKIP, UNLOCK, USE and
ZAP.

In addition, virtually all of the functions that
operate on the current work area by default in-
clude an optional alias parameter. Among them
are AFIELDS(), ALIAS(), ATagInfo(), BOF(), EOF(),
FILTER(), FLOCK(), FOR(), FOUND(), LOCK(),
ORDER(), RECCOUNT(), RECNO(), RLOCK(),
SEEK(), TAG() and USED(). For a complete list of
functions that accept an alias parameter, search the
VFP help using the string „nWorkArea | cTabl-
eAlias.“

Unfortunately, some Xbase commands don‘t
let you specify the IN clause. The two where this
is the biggest issue for me are LOCATE and SCAN.
When you use either of these, or other commands
or functions that depend on the current work area,
take precautions to ensure that you‘re where you
think you are and that you leave things as you
found them.

For all commands and functions that let you
specify the alias, do so every single time. Your
code will be more reliable and its purpose will be
clearer.

Author Profile
Tamar E. Granor, Ph.D. is the owner of Tomorrow’s Solutions,
LLC. She has developed and enhanced numerous Visual Fox-
Pro applications for businesses and other organizations. She
currently focuses on working with other developers through
consulting and subcontracting. Tamar is author or co-author
of nine books including the award winning Hacker’s Guide to
Visual FoxPro and Microsoft Office Automation with Visual
FoxPro. Her most recent books are Taming Visual FoxPro’s
SQL and What’s New in Nine: Visual FoxPro’s Latest Hits.
Her books are available from Hentzenwerke Publishing (www.
hentzenwerke.com). Tamar is a Microsoft Certified Profession-
al and a Microsoft Support Most Valuable Professional. Tamar
speaks frequently about Visual FoxPro at conferences and user
groups in North America and Europe, including every FoxPro
DevCon since 1993. You can reach her at tamar@thegranors.
com or through www.tomorrowssolutionsllc.com

DOWNLOADS
Subscribers can download FR200807_code.zip in the SourceCode sub directory of the document portal. It contains the
following files:
doughennig200807_code.zip
Source code for the article “Practical Uses for XML, Part 1” from Doug Hennig
kitbox200807_code.zip
Source code for the kitbox article “Doing a PROPER Job” from Marcia Akins and Andy Kramek.
tamargranor200807_code.ZIP
Source code for the article “Working with Work Areas” from Tamar Granor.
vista200807_code.zip
Source code for the article “Displaying form borders in Windows Vista” from Venelina Jordanova and Uwe Habermann
rickschummer200807_code.zip
Source code for the article “VFPX: ctl32_StatusBar Easy to Implement” from Rick Schummer

